Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis-modeling
نویسندگان
چکیده
Most brain research to date have focused on studying the amplitude of evoked fMRI responses, though there has recently been an increased interest in measuring onset, peak latency and duration of the responses as well. A number of modeling procedures provide measures of the latency and duration of fMRI responses. In this work we compare several techniques that vary in their assumptions, model complexity, and interpretation. For each method, we introduce methods for estimating amplitude, peak latency, and duration and for performing inference in a multi-subject fMRI setting. We then assess the techniques' relative sensitivity and their propensity for mis-attributing task effects on one parameter (e.g., duration) to another (e.g., amplitude). Finally, we introduce methods for quantifying model misspecification and assessing bias and power-loss related to the choice of model. Overall, the results show that it is surprisingly difficult to accurately recover true task-evoked changes in BOLD signal and that there are substantial differences among models in terms of power, bias and parameter confusability. Because virtually all fMRI studies in cognitive and affective neuroscience employ these models, the results bear on the interpretation of hemodynamic response estimates across a wide variety of psychological and neuroscientific studies.
منابع مشابه
Residual Analysis for Detecting Mis-modeling in fMRI (Running title: Detecting Mis-modeling in fMRI)
The voxel-wise general linear model (GLM) approach has arguably become the dominant way to analyze functional magnetic resonance imaging (fMRI) data. The approach relies on specifying predicted patterns of signal change a priori. In this work we develop methods for detecting mis-modeling in the GLM framework, and derive mathematical expressions for quantifying the effects this has on bias and p...
متن کاملRESIDUAL ANALYSIS FOR DETECTING MIS-MODELING IN fMRI
The voxel-wise general linear model (GLM) approach has arguably become the dominant way to analyze functional magnetic resonance imaging (fMRI) data. The approach relies on specifying predicted patterns of signal change a priori. In this work we develop methods for detecting mis-modeling in the GLM framework, and derive mathematical expressions for quantifying the effects this has on bias and p...
متن کاملEvaluation of Hemodynamic Response Function in Vision and Motor Brain Regions for the Young and Elderly Adults
Introduction: Prior studies comparing Hemodynamic Response Function (HRF) in the young and elderly adults based on fMRI data have reported inconsistent findings for brain vision and motor regions in healthy aging. It is shown that the averaging method employed in all previous works has caused this inconsistency. The averaging is so sensitive to outliers and noise. However, fMRI data are o...
متن کاملLocally Estimated Hemodynamic Response Function and Activation Detection Sensitivity in Heroin-Cue Reactivity Study
Introduction: A fixed hemodynamic response function (HRF) is commonly used for functional magnetic resonance imaging (fMRI) analysis. However, HRF may vary from region to region and subject to subject. We investigated the effect of locally estimated HRF (in functionally homogenous parcels) on activation detection sensitivity in a heroin cue reactivity study. Methods: We proposed...
متن کاملModeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution.
The analysis of functional magnetic resonance imaging (fMRI) time-series data can provide information not only about task-related activity, but also about the connectivity (functional or effective) among regions and the influences of behavioral or physiologic states on that connectivity. Similar analyses have been performed in other imaging modalities, such as positron emission tomography. Howe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 45 1 Suppl شماره
صفحات -
تاریخ انتشار 2009